一个基于B+树索引简单的数据库

程序流程图

数据库实现

数据库系统结构

数据库结构

存储结构

叶子节点

Our leaf node format

(图中少标注了一个next_leaf_pointer)

内部节点

Our internal node format

完整代码(待完善)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <stdbool.h>
#include <sys/stat.h>
#include <fcntl.h>

#define INPUT_BUFFER_SIZE 31
struct {
char buffer[INPUT_BUFFER_SIZE + 1];
size_t length;
} input_buffer;

typedef enum {
INPUT_SUCCESS,
INPUT_TOO_LONG
} InputResult;

typedef enum {
EXECUTE_SUCCESS
} ExecuteResult;

typedef enum {
META_COMMAND_SUCCESS,
META_COMMAND_UNRECOGNIZED_COMMAND
} MetaCommandResult;

typedef enum {
PREPARE_SUCCESS,
PREPARE_NEGATIVE_VALUE,
PREPARE_STRING_TOO_LONG,
PREPARE_SYNTAX_ERROR,
PREPARE_UNRECOGNIZED_STATEMENT,
PREPARE_EMPTY_STATEMENT
} PrepareResult;

typedef enum {
STATEMENT_INSERT,
STATEMENT_SELECT,
STATEMENT_DELETE
} StatementType;

void print_prompt() { printf("myjql> "); }

InputResult read_input() {
/* we read the entire line as the input */
input_buffer.length = 0;
while (input_buffer.length <= INPUT_BUFFER_SIZE
&& (input_buffer.buffer[input_buffer.length++] = getchar()) != '\n'
&& input_buffer.buffer[input_buffer.length - 1] != EOF);
if (input_buffer.buffer[input_buffer.length - 1] == EOF)
exit(EXIT_SUCCESS);
input_buffer.length--;
/* if the last character is not new-line, the input is considered too long,
the remaining characters are discarded */
if (input_buffer.length == INPUT_BUFFER_SIZE
&& input_buffer.buffer[input_buffer.length] != '\n') {
while (getchar() != '\n');
return INPUT_TOO_LONG;
}
input_buffer.buffer[input_buffer.length] = 0;
return INPUT_SUCCESS;
}

#define COLUMN_B_SIZE 11

typedef struct {
uint32_t a;
char b[COLUMN_B_SIZE + 1];
} Row;

struct {
StatementType type;
Row row;
uint8_t flag; /* whether row.a, row.b have valid values */
} statement;

// 定义Row序列化的布局

#define size_of_attribute(Struct, Attribute) sizeof(((Struct*)0)->Attribute)

#define a_SIZE size_of_attribute(Row, a)
#define b_SIZE size_of_attribute(Row, b)
#define a_OFFSET 0
#define b_OFFSET (a_OFFSET + a_SIZE)
#define ROW_SIZE (a_SIZE + b_SIZE)

#define PAGE_SIZE 4096
#define TABLE_MAX_PAGES 100

typedef struct{
int file_descriptor;
uint32_t file_length;
uint32_t num_pages;
void* pages[TABLE_MAX_PAGES];
}Pager;

struct {
Pager* pager;
uint32_t root_page_num;
}table;

typedef struct{
uint32_t page_num;
uint32_t cell_num;
bool end_of_table;
}Cursor;

void print_row(Row* row) {
printf("(%d, %s)\n", row->a, row->b);
}

/* B-Tree operations */

typedef enum { NODE_INTERNAL, NODE_LEAF } NodeType;

// 节点公共头部布局

#define NODE_TYPE_SIZE sizeof(uint8_t) // 节点类型
#define NODE_TYPE_OFFSET 0

#define IS_ROOT_SIZE sizeof(uint8_t) // 是否为根节点
#define IS_ROOT_OFFSET NODE_TYPE_SIZE

#define PARENT_POINTER_SIZE sizeof(uint32_t) // 父节点的指针
#define PARENT_POINTER_OFFSET (IS_ROOT_OFFSET + IS_ROOT_SIZE)

#define COMMON_NODE_HEADER_SIZE (NODE_TYPE_SIZE + IS_ROOT_SIZE + PARENT_POINTER_SIZE)

// 内部节点头部布局

#define INTERNAL_NODE_NUM_KEYS_SIZE sizeof(uint32_t) //key的数量
#define INTERNAL_NODE_NUM_KEYS_OFFSET COMMON_NODE_HEADER_SIZE

#define INTERNAL_NODE_RIGHT_CHILD_SIZE sizeof(uint32_t) // 最右子节点指针
#define INTERNAL_NODE_RIGHT_CHILD_OFFSET (INTERNAL_NODE_NUM_KEYS_OFFSET + INTERNAL_NODE_NUM_KEYS_SIZE)

#define INTERNAL_NODE_HEADER_SIZE (COMMON_NODE_HEADER_SIZE + INTERNAL_NODE_NUM_KEYS_SIZE + INTERNAL_NODE_RIGHT_CHILD_SIZE)

// 内部节点结构体布局

#define INTERNAL_NODE_KEY_SIZE (sizeof(char)*12) // 关键字
#define INTERNAL_NODE_CHILD_SIZE sizeof(uint32_t) // 关键字对应子节点指针

#define INTERNAL_NODE_CELL_SIZE (INTERNAL_NODE_CHILD_SIZE + INTERNAL_NODE_KEY_SIZE)
#define INTERNAL_NODE_MAX_CELLS 30

// 叶子节点头部定义

#define LEAF_NODE_NUM_CELLS_SIZE sizeof(uint32_t) // cell数量
#define LEAF_NODE_NUM_CELLS_OFFSET COMMON_NODE_HEADER_SIZE

#define LEAF_NODE_NEXT_LEAF_SIZE sizeof(uint32_t) // 下一叶节点指针
#define LEAF_NODE_NEXT_LEAF_OFFSET (LEAF_NODE_NUM_CELLS_OFFSET + LEAF_NODE_NUM_CELLS_SIZE)

#define LEAF_NODE_HEADER_SIZE (COMMON_NODE_HEADER_SIZE + LEAF_NODE_NUM_CELLS_SIZE + LEAF_NODE_NEXT_LEAF_SIZE)

// 叶子节点结构体定义

#define LEAF_NODE_KEY_SIZE (sizeof(char)*12) // 关键字
#define LEAF_NODE_KEY_OFFSET 0

#define LEAF_NODE_VALUE_SIZE ROW_SIZE // 存储的数据(Row)
#define LEAF_NODE_VALUE_OFFSET (LEAF_NODE_KEY_OFFSET + LEAF_NODE_KEY_SIZE)

#define LEAF_NODE_CELL_SIZE (LEAF_NODE_KEY_SIZE + LEAF_NODE_VALUE_SIZE)
#define LEAF_NODE_SPACE_FOR_CELLS (PAGE_SIZE - LEAF_NODE_HEADER_SIZE)
#define LEAF_NODE_MAX_CELLS (LEAF_NODE_SPACE_FOR_CELLS / LEAF_NODE_CELL_SIZE)
#define LEAF_NODE_RIGHT_SPLIT_COUNT ((LEAF_NODE_MAX_CELLS + 1) / 2)
#define LEAF_NODE_LEFT_SPLIT_COUNT ((LEAF_NODE_MAX_CELLS + 1) - LEAF_NODE_RIGHT_SPLIT_COUNT)

// B+树基本功能函数定义

NodeType get_node_type(void* node) {
uint8_t value = *((uint8_t*)(node + NODE_TYPE_OFFSET));
return (NodeType)value;
}

void set_node_type(void* node, NodeType type) {
uint8_t value = type;
*((uint8_t*)(node + NODE_TYPE_OFFSET)) = value;
}

bool is_node_root(void* node) {
uint8_t value = *((uint8_t*)(node + IS_ROOT_OFFSET));
return (bool)value;
}

void set_node_root(void* node, bool is_root) {
uint8_t value = is_root;
*((uint8_t*)(node + IS_ROOT_OFFSET)) = value;
}

uint32_t* node_parent(void* node) { return node + PARENT_POINTER_OFFSET; }

uint32_t* internal_node_num_keys(void* node) {
return node + INTERNAL_NODE_NUM_KEYS_OFFSET;
}

uint32_t* internal_node_right_child(void* node) {
return node + INTERNAL_NODE_RIGHT_CHILD_OFFSET;
}

uint32_t* internal_node_cell(void* node, uint32_t cell_num) {
return node + INTERNAL_NODE_HEADER_SIZE + cell_num * INTERNAL_NODE_CELL_SIZE;
}

uint32_t* internal_node_child(void* node, uint32_t child_num) {
uint32_t num_keys = *internal_node_num_keys(node);
if (child_num > num_keys) {
printf("Tried to access child_num %d > num_keys %d\n", child_num, num_keys);
exit(EXIT_FAILURE);
} else if (child_num == num_keys) {
return internal_node_right_child(node);
} else {
return internal_node_cell(node, child_num);
}
}

char* internal_node_key(void* node, uint32_t key_num) {
return (void*)internal_node_cell(node, key_num) + INTERNAL_NODE_CHILD_SIZE;
}

uint32_t* leaf_node_num_cells(void* node) {
return node + LEAF_NODE_NUM_CELLS_OFFSET;
}

uint32_t* leaf_node_next_leaf(void* node) {
return node + LEAF_NODE_NEXT_LEAF_OFFSET;
}

void* leaf_node_cell(void* node, uint32_t cell_num) {
return node + LEAF_NODE_HEADER_SIZE + cell_num * LEAF_NODE_CELL_SIZE;
}

char* leaf_node_key(void* node, uint32_t cell_num) {
return leaf_node_cell(node, cell_num);
}

void* leaf_node_value(void* node, uint32_t cell_num) {
return leaf_node_cell(node, cell_num) + LEAF_NODE_KEY_SIZE;
}

char* get_node_max_key(void* node) {
switch (get_node_type(node)) {
case NODE_INTERNAL:
return &*internal_node_key(node, *internal_node_num_keys(node) - 1);
case NODE_LEAF:
return &*leaf_node_key(node, *leaf_node_num_cells(node) - 1);
}
}

// Pager Cursor

void* get_page(Pager* pager, uint32_t page_num) {
if (page_num > TABLE_MAX_PAGES) {
printf("Tried to fetch page number out of bounds. %d > %d\n", page_num,
TABLE_MAX_PAGES);
exit(EXIT_FAILURE);
}

if (pager->pages[page_num] == NULL) {
// 缓存为0,从文件中分配内存
void* page = malloc(PAGE_SIZE);
uint32_t num_pages = pager->file_length / PAGE_SIZE;

// 可能在文件末尾保存一个部分页面
if (pager->file_length % PAGE_SIZE) {
num_pages += 1;
}

if (page_num <= num_pages) {
lseek(pager->file_descriptor, page_num * PAGE_SIZE, SEEK_SET);
ssize_t bytes_read = read(pager->file_descriptor, page, PAGE_SIZE);
if (bytes_read == -1) {
exit(EXIT_FAILURE);
}
}

pager->pages[page_num] = page;

if (page_num >= pager->num_pages) {
pager->num_pages = page_num + 1;
}
}

return pager->pages[page_num];
}

void serialize_row(Row* source, void* destination) {
memcpy(destination + a_OFFSET, &(source->a), a_SIZE);
memcpy(destination + b_OFFSET, &(source->b), b_SIZE);
}

void deserialize_row(void* source, Row* destination) {
memcpy(&(destination->a), source + a_OFFSET, a_SIZE);
memcpy(&(destination->b), source + b_OFFSET, b_SIZE);
}

void initialize_leaf_node(void* node) {
set_node_type(node, NODE_LEAF);
set_node_root(node, false);
*leaf_node_num_cells(node) = 0;
*leaf_node_next_leaf(node) = 0; // 0 represents no sibling
}

void initialize_internal_node(void* node) {
set_node_type(node, NODE_INTERNAL);
set_node_root(node, false);
*internal_node_num_keys(node) = 0;
}

Cursor* leaf_node_find(uint32_t page_num, char* key) {
void* node = get_page(table.pager, page_num);
uint32_t num_cells = *leaf_node_num_cells(node);

Cursor* cursor = malloc(sizeof(Cursor));
cursor->page_num = page_num;
cursor->end_of_table = false;

// Binary search
uint32_t min_index = 0;
uint32_t one_past_max_index = num_cells;
while (one_past_max_index != min_index) {
uint32_t index = (min_index + one_past_max_index) / 2;
char* key_at_index = &*leaf_node_key(node, index);
if (strcmp(key, key_at_index) == 0) {
cursor->cell_num = index;
return cursor;
}
if (strcmp(key, key_at_index) < 0) {
one_past_max_index = index;
} else {
min_index = index + 1;
}
}

cursor->cell_num = min_index;
return cursor;
}

uint32_t internal_node_find_child(void* node, char* key) {
/*
Return the index of the child which should contain
the given key.
*/

uint32_t num_keys = *internal_node_num_keys(node);

/* Binary search */
uint32_t min_index = 0;
uint32_t max_index = num_keys; /* there is one more child than key */

while (min_index != max_index) {
uint32_t index = (min_index + max_index) / 2;
char* key_to_right = &*internal_node_key(node, index);
if (strcmp(key_to_right, key) >= 0) {
max_index = index;
} else {
min_index = index + 1;
}
}

return min_index;
}

Cursor* internal_node_find(uint32_t page_num, char* key) {
void* node = get_page(table.pager, page_num);

uint32_t child_index = internal_node_find_child(node, key);
uint32_t child_num = *internal_node_child(node, child_index);
void* child = get_page(table.pager, child_num);
switch (get_node_type(child)) {
case NODE_LEAF:
return leaf_node_find(child_num, key);
case NODE_INTERNAL:
return internal_node_find(child_num, key);
}
}

Cursor* table_find(char* key) {
uint32_t root_page_num = table.root_page_num;
void* root_node = get_page(table.pager, root_page_num);

if (get_node_type(root_node) == NODE_LEAF) {
return leaf_node_find(root_page_num, key);
} else {
return internal_node_find(root_page_num, key);
}
}

Cursor* table_start() {
Cursor* cursor = table_find("A");

void* node = get_page(table.pager, cursor->page_num);
uint32_t num_cells = *leaf_node_num_cells(node);
cursor->end_of_table = (num_cells == 0);

return cursor;
}

void* cursor_value(Cursor* cursor) {
uint32_t page_num = cursor->page_num;
void* page = get_page(table.pager, page_num);
return leaf_node_value(page, cursor->cell_num);
}

void cursor_advance(Cursor* cursor) {
uint32_t page_num = cursor->page_num;
void* node = get_page(table.pager, page_num);

cursor->cell_num += 1;
if (cursor->cell_num >= (*leaf_node_num_cells(node))) {
/* Advance to next leaf node */
uint32_t next_page_num = *leaf_node_next_leaf(node);
if (next_page_num == 0) {
/* This was rightmost leaf */
cursor->end_of_table = true;
} else {
cursor->page_num = next_page_num;
cursor->cell_num = 0;
}
}
}



Pager* pager_open(const char* filename) {
int fd = open(filename,
O_RDWR | // 读/写模式
O_CREAT, // 如果文件不存在,则创建该文件
S_IWUSR | // 用户写权限
S_IRUSR // 用户读权限
);

if (fd == -1) {
printf("Unable to open file\n");
exit(EXIT_FAILURE);
}

off_t file_length = lseek(fd, 0, SEEK_END);

Pager* pager = malloc(sizeof(Pager));
pager->file_descriptor = fd;
pager->file_length = file_length;
pager->num_pages = (file_length / PAGE_SIZE);

if (file_length % PAGE_SIZE != 0) {
printf("Db file is not a whole number of pages. Corrupt file.\n");
exit(EXIT_FAILURE);
}

for (uint32_t i = 0; i < TABLE_MAX_PAGES; i++) {
pager->pages[i] = NULL;
}


return pager;
}

void open_file(const char* filename) {
/* open file */
Pager* pager = pager_open(filename);

table.pager = pager;
table.root_page_num = 0;

if (pager->num_pages == 0) {
// New database file. Initialize page 0 as leaf node.
void* root_node = get_page(pager, 0);
initialize_leaf_node(root_node);
set_node_root(root_node, true);
}

}

void pager_flush(Pager* pager, uint32_t page_num) {
if (pager->pages[page_num] == NULL) {
printf("Tried to flush null page\n");
exit(EXIT_FAILURE);
}

off_t offset = lseek(pager->file_descriptor, page_num * PAGE_SIZE, SEEK_SET);

if (offset == -1) {
exit(EXIT_FAILURE);
}

ssize_t bytes_written =
write(pager->file_descriptor, pager->pages[page_num], PAGE_SIZE);

if (bytes_written == -1) {
exit(EXIT_FAILURE);
}
}

void exit_nicely(int code) {
/* do clean work */
Pager* pager = table.pager;

int i = 0;
for (i = 0; i < pager->num_pages; i++) {
if (pager->pages[i] == NULL) {
continue;
}
pager_flush(pager, i);
free(pager->pages[i]);
pager->pages[i] = NULL;
}

int result = close(pager->file_descriptor);
if (result == -1) {
printf("Error closing db file.\n");
exit(EXIT_FAILURE);
}
for (i = 0; i < TABLE_MAX_PAGES; i++) {
void* page = pager->pages[i];
if (page) {
free(page);
pager->pages[i] = NULL;
}
}
free(pager);
exit(code);
}

void exit_success() {
printf("bye~\n");
exit_nicely(EXIT_SUCCESS);
}

MetaCommandResult do_meta_command() {
if (strcmp(input_buffer.buffer, ".exit") == 0) {
exit(EXIT_SUCCESS);
} else {
return META_COMMAND_UNRECOGNIZED_COMMAND;
}
}

PrepareResult prepare_insert() {
statement.type = STATEMENT_INSERT;

char* keyword = strtok(input_buffer.buffer, " ");
char* a = strtok(NULL, " ");
char* b = strtok(NULL, " ");
int x;

if (a == NULL || b == NULL)
return PREPARE_SYNTAX_ERROR;

x = atoi(a);
if (x < 0)
return PREPARE_NEGATIVE_VALUE;
if (strlen(b) > COLUMN_B_SIZE)
return PREPARE_STRING_TOO_LONG;

statement.row.a = x;
strcpy(statement.row.b, b);

return PREPARE_SUCCESS;
}

PrepareResult prepare_condition() {
statement.flag = 0;

char* keyword = strtok(input_buffer.buffer, " ");
char* b = strtok(NULL, " ");
char* c = strtok(NULL, " ");

if (b == NULL) return PREPARE_SUCCESS;
if (c != NULL) return PREPARE_SYNTAX_ERROR;

if (strlen(b) > COLUMN_B_SIZE)
return PREPARE_STRING_TOO_LONG;

strcpy(statement.row.b, b);
statement.flag |= 2;

return PREPARE_SUCCESS;
}

PrepareResult prepare_select() {
statement.type = STATEMENT_SELECT;
return prepare_condition();
}

PrepareResult prepare_delete() {
statement.type = STATEMENT_DELETE;
PrepareResult result = prepare_condition();
if (result == PREPARE_SUCCESS && statement.flag == 0)
return PREPARE_SYNTAX_ERROR;
return result;
}

PrepareResult prepare_statement() {
if (strlen(input_buffer.buffer) == 0) {
return PREPARE_EMPTY_STATEMENT;
} else if (strncmp(input_buffer.buffer, "insert", 6) == 0) {
return prepare_insert();
} else if (strncmp(input_buffer.buffer, "select", 6) == 0) {
return prepare_select();
} else if (strncmp(input_buffer.buffer, "delete", 6) == 0) {
return prepare_delete();
}
return PREPARE_UNRECOGNIZED_STATEMENT;
}

uint32_t get_unused_page_num(Pager* pager) { return pager->num_pages; }

void create_new_root(uint32_t right_child_page_num) {
/*
拆分根的处理。
旧的根复制到新页面,成为左子。
确保子结点的地址正确传入。
重新初始化根页面以确保包含新的根节点。
新的根节点指向两个子节点。
*/

void* root = get_page(table.pager, table.root_page_num);
void* right_child = get_page(table.pager, right_child_page_num);
uint32_t left_child_page_num = get_unused_page_num(table.pager);
void* left_child = get_page(table.pager, left_child_page_num);

/* 左子结点具有从旧根复制的数据 */
memcpy(left_child, root, PAGE_SIZE);
set_node_root(left_child, false);

/* 根节点是一个新的内部节点,有一个关键值和两个子节点 */
initialize_internal_node(root);
set_node_root(root, true);
*internal_node_num_keys(root) = 1;
*internal_node_child(root, 0) = left_child_page_num;
char* left_child_max_key = get_node_max_key(left_child);
*internal_node_key(root, 0) = *left_child_max_key;
*internal_node_right_child(root) = right_child_page_num;
*node_parent(left_child) = table.root_page_num;
*node_parent(right_child) = table.root_page_num;
}

void internal_node_insert(uint32_t parent_page_num,
uint32_t child_page_num) {
/*
将新的子/关键值(child/key)键值对添加到与子结点对应的父结点
*/

void* parent = get_page(table.pager, parent_page_num);
void* child = get_page(table.pager, child_page_num);
char* child_max_key = get_node_max_key(child);
uint32_t index = internal_node_find_child(parent, child_max_key);

uint32_t original_num_keys = *internal_node_num_keys(parent);
*internal_node_num_keys(parent) = original_num_keys + 1;

if (original_num_keys >= INTERNAL_NODE_MAX_CELLS) {
printf("Need to implement splitting internal node\n");
exit(EXIT_FAILURE);
}

uint32_t right_child_page_num = *internal_node_right_child(parent);
void* right_child = get_page(table.pager, right_child_page_num);

if ( strcmp(child_max_key, get_node_max_key(right_child) ) > 0 ) {
/* 替换右子树的结点 */
*internal_node_child(parent, original_num_keys) = right_child_page_num;
*internal_node_key(parent, original_num_keys) =
*get_node_max_key(right_child);
*internal_node_right_child(parent) = child_page_num;
} else {
/* 为新的结点或者说层腾出空间 */
int i;
for (i = original_num_keys; i > index; i--) {
void* destination = internal_node_cell(parent, i);
void* source = internal_node_cell(parent, i - 1);
memcpy(destination, source, INTERNAL_NODE_CELL_SIZE);
}
*internal_node_child(parent, index) = child_page_num;
*internal_node_key(parent, index) = *child_max_key;
}
}

void update_internal_node_key(void* node, char* old_key, const char* new_key) {
uint32_t old_child_index = internal_node_find_child(node, old_key);
*internal_node_key(node, old_child_index) = *new_key;
}

void leaf_node_split_and_insert(Cursor* cursor, const char* key, Row* value) {
/*
创建一个新节点并移动一半的结点。
将新值插入两个节点之一。
更新父结点或创建新父结点。
*/

void* old_node = get_page(table.pager, cursor->page_num);
char* old_max = get_node_max_key(old_node);
uint32_t new_page_num = get_unused_page_num(table.pager);
void* new_node = get_page(table.pager, new_page_num);
initialize_leaf_node(new_node);
*node_parent(new_node) = *node_parent(old_node);
*leaf_node_next_leaf(new_node) = *leaf_node_next_leaf(old_node);
*leaf_node_next_leaf(old_node) = new_page_num;

/*
在旧的(左)和新(右)结点之间平均分配所有现有密钥和新密钥。
从右侧开始,将每个键移动到正确的位置。
*/
int i;
for (i = LEAF_NODE_MAX_CELLS; i >= 0; i--) {
void* destination_node;
if (i >= LEAF_NODE_LEFT_SPLIT_COUNT) {
destination_node = new_node;
} else {
destination_node = old_node;
}
uint32_t index_within_node = i % LEAF_NODE_LEFT_SPLIT_COUNT;
void* destination = leaf_node_cell(destination_node, index_within_node);

if (i == cursor->cell_num) {
serialize_row(value,
leaf_node_value(destination_node, index_within_node));
*leaf_node_key(destination_node, index_within_node) = *key;
} else if (i > cursor->cell_num) {
memcpy(destination, leaf_node_cell(old_node, i - 1), LEAF_NODE_CELL_SIZE);
} else {
memcpy(destination, leaf_node_cell(old_node, i), LEAF_NODE_CELL_SIZE);
}
}

/* 更新两个叶结点上的结构 */
*(leaf_node_num_cells(old_node)) = LEAF_NODE_LEFT_SPLIT_COUNT;
*(leaf_node_num_cells(new_node)) = LEAF_NODE_RIGHT_SPLIT_COUNT;

if (is_node_root(old_node)) {
return create_new_root(new_page_num);
} else {
uint32_t parent_page_num = *node_parent(old_node);
char* new_max = get_node_max_key(old_node);
void* parent = get_page(table.pager, parent_page_num);

update_internal_node_key(parent, old_max, new_max);
internal_node_insert(parent_page_num, new_page_num);
return;
}
}

void leaf_node_insert(Cursor* cursor, char* key, Row* value) {
void* node = get_page(table.pager, cursor->page_num);

uint32_t num_cells = *leaf_node_num_cells(node);
if (num_cells >= LEAF_NODE_MAX_CELLS) {
// 节点已满
leaf_node_split_and_insert(cursor, key, value);
return;
}

if (cursor->cell_num < num_cells) {
// 为新数据腾出空间
int i;
for (i = num_cells; i > cursor->cell_num; i--) {
memcpy(leaf_node_cell(node, i), leaf_node_cell(node, i - 1),
LEAF_NODE_CELL_SIZE);
}
}

*(leaf_node_num_cells(node)) += 1;
*(leaf_node_key(node, cursor->cell_num)) = *key;
serialize_row(value, leaf_node_value(node, cursor->cell_num));
}

ExecuteResult execute_insert() {
Row* row_to_insert = &(statement.row);
char* key_to_insert = row_to_insert->b;
Cursor* cursor = table_find(key_to_insert);

void* node = get_page(table.pager, cursor->page_num);
uint32_t num_cells = *leaf_node_num_cells(node);

leaf_node_insert(cursor, row_to_insert->b, row_to_insert);

free(cursor);

return EXECUTE_SUCCESS;
}

ExecuteResult execute_select() {

Cursor* cursor = table_start();

Row row;
bool isFind = false;
if (statement.flag == 0) {
while (!(cursor->end_of_table)) {
deserialize_row(cursor_value(cursor), &row);
if (row.a != 0) {
if (!isFind)
{
isFind = true;
printf("\n");
}
print_row(&row);
}

cursor_advance(cursor);
}
}
Row rows[10000];
int count = 0;
while (!(cursor->end_of_table)) {
deserialize_row(cursor_value(cursor), &row);
if (strcmp(row.b, statement.row.b) == 0 && row.a != 0) {
if (!isFind)
{
isFind = true;
printf("\n");
rows[0] = row;
count = 1;
}
else {
int position = 0;
while (position <= count) {
if (row.a > rows[position].a) {
break;
} else {
position++;
}
}
count++;
for (int i = count; i > position; i--) {
rows[i] = rows[i - 1];
}
rows[position] = row;
}
}

cursor_advance(cursor);
}
for (int i = 0; i < count; i++) {
print_row(&rows[i]);
}

free(cursor);
if (!isFind) {
printf("\n(Empty)");
printf("\n");
}

return EXECUTE_SUCCESS;
}

ExecuteResult execute_delete() {
Cursor* cursor = table_start();

Row row;
while (!(cursor->end_of_table)) {
deserialize_row(cursor_value(cursor), &row);
if (strcmp( row.b, statement.row.b) == 0) {
Row del;
del.a = 0;
int i;
for (i = 0; i < sizeof(del) ; i++) {
del.b[i] = row.b[i];
}
serialize_row(&del, cursor_value(cursor));

}
cursor_advance(cursor);
}

free(cursor);

return EXECUTE_SUCCESS;
}

ExecuteResult execute_statement() {
switch (statement.type) {
case STATEMENT_INSERT:
return execute_insert();
case STATEMENT_SELECT:
return execute_select();
case STATEMENT_DELETE:
return execute_delete();
}
}

void sigint_handler(int signum) {
printf("\n");
exit(EXIT_SUCCESS);
}

int main(int argc, char* argv[]) {
if (argc < 2) {
printf("Must supply a database filename.\n");
exit(EXIT_FAILURE);
}

atexit(&exit_success);
signal(SIGINT, &sigint_handler);

open_file(argv[1]);

while (1) {
print_prompt();
switch (read_input()) {
case INPUT_SUCCESS:
break;
case INPUT_TOO_LONG:
printf("Input is too long.\n");
continue;
}

if (input_buffer.buffer[0] == '.') {
switch (do_meta_command()) {
case META_COMMAND_SUCCESS:
continue;
case META_COMMAND_UNRECOGNIZED_COMMAND:
printf("Unrecognized command '%s'.\n", input_buffer.buffer);
continue;
}
}

switch (prepare_statement()) {
case PREPARE_SUCCESS:
break;
case PREPARE_EMPTY_STATEMENT:
continue;
case PREPARE_NEGATIVE_VALUE:
printf("Column `a` must be positive.\n");
continue;
case PREPARE_STRING_TOO_LONG:
printf("String for column `b` is too long.\n");
continue;
case PREPARE_SYNTAX_ERROR:
printf("Syntax error. Could not parse statement.\n");
continue;
case PREPARE_UNRECOGNIZED_STATEMENT:
printf("Unrecognized keyword at start of '%s'.\n",
input_buffer.buffer);
continue;
}

switch (execute_statement()) {
case EXECUTE_SUCCESS:
printf("\nExecuted.\n\n");
break;
}
}
}

参考资料:db_tutorial


本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!